0. 前言

原始的生成对抗网络 (Generative Adversarial Network, GAN) 在训练过程中面临着模式坍塌和梯度消失等问题,为了解决这些问题,研究人员提出了大量的关键技术以提高GAN模型的整体稳定性,并降低了上述问题出现的可能性。例如 WGAN (Wasserstein GAN) 和 WGAN-GP (Wasserstein GAN-Gradient Penalty) 等,通过对原始生成对抗网络 (Generative Adversarial Network, GAN) 框架进行了细微调整,就能够训练复杂GAN。在本节中,我们将学习 WGANWGAN-GP,两者都对原始 GAN 框架进行了细微调整,以改善图像生成过程的稳定性和质量。

1. WGAN-GP

WGAN (Wasserstein GAN) 是提高 GAN 训练稳定性方面的一次巨大进步,在经过一些简单改动后 GAN 就能够实现以下两个特点:

  • 与生成器的收敛度和生成样本质量相关的损失度量
  • 优化过程的稳定性得到提高

具体来说,WGAN 针对判别器和生成器提出了一种新的损失函数 (Wasserstein Loss),用这种损失函数代替二元交叉熵就可以让 GAN 的收敛更加稳定。
在本节中,我们将构建一个 WGAN-GP (Wasserstein GAN-Gradient Penalty),利用 CelebA 数据集训练模型以生成人脸图像。

1.1 Wasserstein 损失

首先我们来回顾一下二元交叉嫡, 在训练 DCGAN 判别器和生成器时采用了这种损失函数:
− 1 n ∑ i = 1 n ( y i l o g ( p i ) + ( 1 − y i ) l o g ( 1 − p i ) ) -\frac 1 n \sum_{i=1}^n(y_ilog(p_i)+(1-y_i)log(1-p_i)) n1i=1n(yilog(pi)+(1yi)log(1pi))
为了训练 GAN 的判别器 D,我们根据以下两者计算损失:真实图像的预测 p i = D ( x i ) p_i=D(x_i) pi=D(xi) 与标签 y i = 1 y_i=1 yi=1 之间的误差,以及生成图像的预测 p i = D ( G ( z i ) ) p_i=D(G(z_i)) pi=D(G(zi))与标签 y i = 0 y_i=0 yi=0 之间的误差。因此,对于 GAN 的判别器来说,损失函数最小化的过程可以表示为:
min ⁡ D − ( E x ∼ p X [ log ⁡ D ( x ) ] + E z ∼ p Z [ log ⁡ ( 1 − D ( G ( z ) ) ) ] ) \mathop {\min} \limits_{D}-(\mathbb E_{x\sim p_X}[\log D(x)]+\mathbb E_{z\sim p_Z}[\log (1-D(G(z)))]) Dmin(ExpX[logD(x)]+EzpZ[log(1D(G(z)))])
为了训练 GAN 的生成器 G,我们根据生成图像的预测 p i = D ( G ( z i ) ) p_i=D(G(z_i)) pi=D(G(zi)) 与标签 y i = 1 y_i=1 yi=1 的误差计算损失。因此,对于 GAN 的生成器来说,将损失函数最小化的过程可以表示为:
min ⁡ G − ( E z ∼ p Z [ log ⁡ D ( G ( z ) ) ] ) \mathop {\min}\limits_{G}-(\mathbb E_{z\sim p_Z}[\log D(G(z))]) Gmin(EzpZ[logD(G(z))])
接下来,我们比较上述损失函数与 Wasserstein 损失函数。
Wasserstein 损失 (Wasserstein Loss) 是用于 Wasserstein GAN (WGAN) 的一种损失函数。与传统的二元交叉熵损失函数不同,Wasserstein 损失引入了标签 1-1,将判别器的输出从概率值转变为分数 (score),因此,WGAN 的判别器通常也被称为评论家 (critic),并要求判别器是 1-Lipschitz 连续函数。
具体来说,Wasserstein 损失使用标签 y i = 1 y_i=1 yi=1 y i = − 1 y_i=-1 yi=1 代替 y i = 1 y_i=1 yi=1 y i = 0 y_i=0 yi=0,同时还需要移除判别器最后一层的 Sigmoid激活函数,如此一来预测结果 p i p_i pi 就不一定在 [ 0 , 1 ] [0,1] [0,1] 范围内了,它可以是 [ − ∞ , ∞ ] [-∞,∞] [,] 范围内的任何值。Wasserstein 损失的定义如下:
− 1 n ∑ i = 1 n ( y i p i ) -\frac 1 n∑_{i=1}^n(y_ip_i) n1i=1n(yipi)
在训练 WGAN 的判别器 D 时,我们将计算以下损失:判别器对真实图像的预测 p i = D ( x i ) p_i=D(x_i) pi=D(xi) 与标签 y i = 1 y_i=1 yi=1 之间的误差,判别器对生成图像的预测 p i = D ( G ( z i ) ) p_i=D(G(z_i)) pi=D(G(zi)) 与标签 y i = − 1 y_i=-1 yi=1 之间的误差。因此,对于 WGAN 判别器,最小化损失函数的过程可以表示为:
min ⁡ D − ( E x ∼ p X [ D ( x ) ] − E z ∼ p Z [ D ( G ( z ) ) ] ) \mathop {\min}\limits_ D - (\mathbb E_{x\sim p_X}[D(x)] - \mathbb E_{z\sim p_Z}[D(G(z))]) Dmin(ExpX[D(x)]EzpZ[D(G(z))])
换句话说,WGAN 判别器试图最大化其对真实图像的预测和生成图像的预测之间的差异,且真实图像的得分更高。
而对于 WGAN 生成器 G 的训练,我们根据判别器对生成图像的预测 p i = D ( G ( z i ) ) p_i=D(G(z_i)) pi=D(G(zi)) 与标签 y i = 1 y_i=1 yi=1 计算损失。因此,对于 WGAN 生成器,最小化损失函数可以表示为:
min ⁡ G − ( E z ∼ p Z [ D ( G ( z ) ) ] ) \mathop {\min}\limits_ G - (\mathbb E_{z\sim p_Z}[D(G(z))]) Gmin(EzpZ[D(G(z))])
换句话说,WGAN 生成器试图生成被判别器以极高分数判定为真实图像的图像(即,令判别器认为它们是真实的)。

1.2 Lipschitz 约束

由于我们允许判别器输出 [ − ∞ , ∞ ] [-∞,∞] [,] 范围内的任意值,而不是按照 Sigmoid 函数那样将输出限制在 [ 0 , 1 ] [0,1] [0,1] 范围内,因此 Wasserstein 损失可能会非常大。因此,为了使 Wasserstein 损失函数正常工作,需要对判别器进行额外约束,即 1-Lipschitz 连续性约束。判别器是一个将图像转换为预测的函数 D,如果对于任意两个输人图像 x 1 x_1 x1 x 2 x_2 x2,判别器函数 D 满足以下不等式,则该函数为 1-Lipschitz 连续:
∣ D ( x 1 ) − D ( x 2 ) ∣ ∣ x 1 − x 2 ∣ ≤ 1 \frac {|D(x_1) - D(x_2)|}{|x_1 - x_2|} ≤ 1 x1x2D(x1)D(x2)1
其中, ∣ x 1 − x 2 ∣ |x_1 - x_2| x1x2 表示两个图像的平均像素之差的绝对值, ∣ D ( x 1 ) − D ( x 2 ) ∣ |D(x_1) - D(x_2)| D(x1)D(x2) 表示判别器预测之间的绝对值。这意味着判别器的预测变化速率在任何情况下都是有界的(即梯度的绝对值不能大于 1)。可以在下图中的 Lipschitz 连续的一维函数中看到,无论将圆锥放在任何位置,曲线都不会进入圆锥内部。换句话说,曲线上任何一点的上升或下降速度都是有限的。

Lipschitz 连续

1.3 强制 Lipschitz 约束

在原始的 WGAN 论文中,作者通过在每个训练结束后将判别器的权重裁剪到一个较小范围内 [ − 0.01 , 0.01 ] [-0.01, 0.01] [0.01,0.01] 来强制执行 Lipschitz 约束。
由于我们裁剪了判别器的权重,判别器的学习能力大大降低,因此,事实上,权重裁剪并不是一种理想的强制 Lipschitz 约束的方式。一个强大的判别器对于 WGAN 的成功至关重要,因为如果没有准确的梯度,生成器无法学习如何调整其权重以产生更好的样本。
因此,研究人员提出了许多其他方法来强制执行 Lipschitz 约束,并提高 WGAN 学习复杂特征的能力。其中一种方法是带有梯度惩罚 (Gradient Penalty) 的 Wasserstein GAN
通过在判别器的损失函数中包含一个梯度惩罚项来直接强制执行 Lipschitz 约束,如果梯度范数偏离 1 时,该项会惩罚模型,从而使训练过程更加稳定。
接下来,将这个额外的梯度惩罚项加入到判别器损失函数中。

1.4 梯度惩罚损失

下图展示了 WGAN-GP 判别器的训练过程,与原始判别器的训练过程进行比较,我们可以看到关键的改进是将梯度惩罚损失作为整体损失函数的一部分,并与来自真实图像和生成图像的 Wasserstein 损失一起使用。

WGAN-GP

梯度惩罚损失衡量了预测关于输入图像的梯度范数与 1 之间的平方差。模型倾向于找到能够使梯度惩罚项最小化的权重,从而鼓励模型符合 Lipschitz 约束。
在训练过程中,每一处的计算梯度是非常困难的,因此WGAN-GP 只在少数几个点处评估梯度。为了确保平衡的,我们使用一组插值图像,在真实图像与伪造图像之间的随机位置逐像素进行插值 (Interpolation) 以生成一些图像。

插值图像

使用 Keras 计算梯度惩罚项:

    def gradient_penalty(self, batch_size, real_images, fake_images):
        # 批数据中的每个图像都会得到一个 0~1 之间的随机数字,存储到向量 alpha 中
        alpha = tf.random.normal([batch_size, 1, 1, 1], 0.0, 1.0)
        # 计算一组插值图像
        diff = fake_images - real_images
        interpolated = real_images + alpha * diff
        with tf.GradientTape() as gp_tape:
            gp_tape.watch(interpolated)
            # 使用判别器对每个插值图像进行评分
            pred = self.critic(interpolated, training=True)
        # 计算插值图像 (y_pred) 的预测对于输入 interpolated_samples) 的梯度
        grads = gp_tape.gradient(pred, [interpolated])[0]
        # 计算这个向量的 L2 范数(即欧几里得长度)
        norm = tf.sqrt(tf.reduce_sum(tf.square(grads), axis=[1, 2, 3]))
        # 函数返回 L2 范数与 1 之差的平方的均值
        gp = tf.reduce_mean((norm - 1.0) ** 2)
        return gp

1.5 训练 WGAN-GP

使用 Wasserstein 损失函数的一个优点是,不再需要担心平衡判别器和生成器的训练。事实上,在使用 Wasserstein 损失时,必须在更新生成器之前将判别器训练到收敛,以确保生成器更新的梯度准确无误。这与标准 GAN 相反,标准 GAN 中重要的是不要让判别器变得过强。
因此,使用 Wasserstein GAN,我们可以简单地在生成器更新之间多次训练判别器,以确保它接近收敛。通常每次生成器更新一次,判别器更新三到五次。
了解了 WGAN-GP 的两个关键概念 (Wasserstein 损失和梯度惩罚项)后,使用 Keras 实现 WGAN-GP

    def train_step(self, real_images):
        batch_size = tf.shape(real_images)[0]
        # 对判别器进行三次更新
        for i in range(self.critic_steps):
            random_latent_vectors = tf.random.normal(
                shape=(batch_size, self.latent_dim)
            )

            with tf.GradientTape() as tape:
                fake_images = self.generator(
                    random_latent_vectors, training=True
                )
                fake_predictions = self.critic(fake_images, training=True)
                real_predictions = self.critic(real_images, training=True)
                # 计算判别器的 Wasserstein 损失
                c_wass_loss = tf.reduce_mean(fake_predictions) - tf.reduce_mean(real_predictions)
                # 计算梯度惩罚项
                c_gp = self.gradient_penalty(batch_size, real_images, fake_images)
                # 判别器损失函数是 Wasserstein 损失和梯度惩罚的加权和
                c_loss = c_wass_loss + c_gp * self.gp_weight
            c_gradient = tape.gradient(c_loss, self.critic.trainable_variables)
            # 更新判别器的权重
            self.c_optimizer.apply_gradients(
                zip(c_gradient, self.critic.trainable_variables)
            )
        random_latent_vectors = tf.random.normal(shape=(batch_size, self.latent_dim))
        with tf.GradientTape() as tape:
            fake_images = self.generator(random_latent_vectors, training=True)
            fake_predictions = self.critic(fake_images, training=True)
            # 计算生成器的 Wasserstein 损失
            g_loss = -tf.reduce_mean(fake_predictions)

        gen_gradient = tape.gradient(g_loss, self.generator.trainable_variables)
        # 更新生成器的权重
        self.g_optimizer.apply_gradients(
            zip(gen_gradient, self.generator.trainable_variables)
        )

        self.c_loss_metric.update_state(c_loss)
        self.c_wass_loss_metric.update_state(c_wass_loss)
        self.c_gp_metric.update_state(c_gp)
        self.g_loss_metric.update_state(g_loss)
        return {m.name: m.result() for m in self.metrics}

在训练 WGAN-GP 之前,需要注意的最后一点是判别器不应该使用批量归一化。这是因为批归一化会在同一批图像之间创建相关性,从而使梯度惩罚损失的效果降低。实验证明,即使在判别器中没有批归一化, WGAN-GP 仍然可以输出出色的结果。

2. GAN 与 WGAN-GP 的关键区别

总而言之,标准 GANWGAN-GP 之间存在以下:

  • WGAN-GP 使用 Wasserstein 损失
  • WGAN-GP 使用 1 表示真实图像标签,使用 -1 表示伪造图像的标签
  • 判别器的最后一层没有使用 sigmoid 激活
  • 在判别器的损失函数中包含梯度惩罚项
  • 每训练一次生成器更新权重,需要多次训练判别器
  • 判别器中没有批归一化层

3. WGAN-GP 模型分析

训练 25epoch 后,WGAN-GP 模型的生成器能够生成合理图像:

面部生成结果

该模型已经学习到了面部的重要高级特征,且没有出现模式坍塌的迹象。
如果我们将 WGAN-GP 的输出与变分自编码器 (Variational Autoencoder, VAE) 的输出进行比较,可以看到 WGAN-GP 生成的图像通常更清晰。总的来说,VAE 倾向于产生颜色边界模糊的图像,而 GAN 产生的图像更加清晰合理。GAN 通常比 VAE 更难训练,需要更长的时间才能获得满意的数据质量。

小结

在本节中,我们学习了如何使用 Wasserstein 损失函数以解决经典 GAN 训练过程中的模式坍塌和梯度消失等问题,使得 GAN 的训练更加可预测和可靠。WGAN-GP 通过在损失函数中添加一个令梯度范数指向 1 的项,为训练过程施加 1-Lipschitz 约束。

系列链接

AIGC实战——生成模型简介
AIGC实战——深度学习 (Deep Learning, DL)
AIGC实战——卷积神经网络(Convolutional Neural Network, CNN)
AIGC实战——自编码器(Autoencoder)
AIGC实战——变分自编码器(Variational Autoencoder, VAE)
AIGC实战——使用变分自编码器生成面部图像
AIGC实战——生成对抗网络(Generative Adversarial Network, GAN)

相关文章

一张图读懂人工智能

三、人工智能和多式联运 AI产品的发展趋势,以及语言模型的应急能力和广泛应用。视频探讨了人工智能和人类的优劣势,以及未来的发展方向。视频提出了一种积极的心态,认为人工智能可以成为我们的同事,帮助我们提高效率和能力。二、大型语言模型的训练过程和应用场景,包括文本到文本、图像到文本、语音转录等多个方面。同时也提到了不同模型的能力和成本。一、生成人工智能的概念和应用,以及如何使用大型语言模型进行聊天和创造原创内容。五、如何使用生成人工智能作为招聘公司的工具,以及如何有效地使用生成人工智能来制作有用结果的提示。

基于YOLOv8深度学习+Pyqt5的电动车头盔佩戴检测系统

该系统利用深度学习技术,通过训练YOLOv8模型来识别电动车骑行者是否佩戴头盔,并在检测到未佩戴头盔的情况下发出警报。因此,开发一种能够实时监测头盔佩戴情况的系统,对于提高骑行者的安全意识和减少交通事故具有重要作用。本文提出的基于YOLOv8的电动车头盔佩戴检测系统,能够有效地提高电动车骑行者的安全意识。YOLOv8是YOLO系列目标检测模型的最新版本,它在前代模型的基础上进行了优化,提高了检测速度和准确性。在不同的场景和光照条件下,模型均能稳定地识别出佩戴和未佩戴头盔的骑行者。wx供重浩:创享日记。

chatgpt的大致技术原理

在RLHF中,人类用户对模型生成的文本提供反馈(如打分或选择更喜欢的文本),然后模型根据这些反馈进行进一步的训练。预处理步骤包括分词(使用BPE算法将文本分解为更小的子单元,如单词或符号)、去除停用词(即那些对文本意义不大的词,如“的”、“了”等)以及其他可能的文本清洗工作。生成过程中,模型会考虑前文的上下文信息,以确保生成的文本是连贯和有意义的。通过收集大量的文本数据、建立深度学习模型、进行预训练和微调以及使用搜索算法和人类反馈强化学习等技术,ChatGPT能够生成高质量、连贯且有用的文本回复。

云计算与边缘计算:有什么区别?

云计算和边缘计算作为不同的计算范式,各自在特定场景中发挥着独特的作用。它们的区别体现在数据处理位置、延迟、可用性以及应用场景等方面。然而,随着数字化时代的发展,它们也逐渐形成了协同应用的趋势,充分发挥各自的优势,提供更灵活、高效的计算体系结构。未来,随着智能化、自动化和边缘计算的边界拓展,云计算和边缘计算将进一步推动数字化转型。同时,安全性、跨边缘计算标准和环境可持续性等问题也需要在未来的发展中得到更好的解决。

ChatGPT高效提问—prompt基础

​ 设计一个好的prompt对于获取理想的生成结果至关重要。通过选择合适的关键词、提供明确的上下文、设置特定的约束条件,可以引导模型生成符合预期的回复。例如,在对话中,可以使用明确的问题或陈述引导模型生成相关、具体的回答;在摘要生成中,可以提供需要摘要的文章段落作为prompt,以确保生成的摘要准确而精炼。

二维平面阵列波束赋形原理和Matlab仿真

阵面左下角天线位于坐标原点,将坐标原点阵元设为参考阵元,计算每个阵元相对于该参考阵元的入射波程差,从而来计算每个阵元接收的回波信号。实现波束赋形的最基本的方法是对各个天线阵元的信号进行适当延迟后相加,使目标方向的信号同相叠加得到增强,而其他方向均有不同程度的削弱,该方法通常用于模拟信号.根据上述理论推导可以仿真任意平面阵列的方向图,这里对两种典型的阵列(矩形平面阵列和圆形阵列)进行Matlab仿真,其余类型的阵列在此基础上修改即可。根据上述圆形阵列公式做仿真,得到下述的三维空间方向图。

人工智能与机器学习——开启智能时代的里程碑

人工智能是指使计算机系统表现出类似于人类智能的能力。其目标是实现机器具备感知、理解、学习、推理和决策等智能行为。人工智能的发展可以追溯到上世纪50年代,随着计算机技术和算法的不断进步,人工智能得以实现。机器学习是人工智能的一个重要分支,它通过让计算机从数据中学习和改进性能,而不需要明确的编程指令。机器学习可以分为监督学习、无监督学习和强化学习三种主要类型。

【GPU】深入理解GPU硬件架构及运行机制

GPU的基本底层构成,主要是以GPU计算核心 Cores,以及Memory以及控制单元,三大组成要素组成。Core是计算的基本单元,既可以用作简单的浮点运算,又可以做一些复杂的运算例如,tensor 或者ray tracing。多个core之间通讯的方式:在特定的应用场合多个core之间是不需要的通讯的,也就是各干各的(例如 图像缩放)。但是也有一些例子,多个core之间要相互通讯配合(例如上文谈到的数组求和问题),每个core之间都可以实现交互数据是非常昂贵的,

RAG中的3个高级检索技巧

我们介绍的这些检索技术有助于提高文档的相关性。但是这方面的研究还正在进行,还有很多其他方法例如,利用真实反馈数据对嵌入模型进行微调;直接微调LLM以使其检索能力最大化(RA-DIT);探索更复杂的嵌入适配器使用深度神经网络而不是矩阵;深度和智能分块技术作者:Ahmed Besbes。

大数据深度学习卷积神经网络CNN:CNN结构、训练与优化一文全解

卷积神经网络是一种前馈神经网络,它的人工神经元可以响应周围单元的局部区域,从而能够识别视觉空间的部分结构特征。卷积层: 通过卷积操作检测图像的局部特征。激活函数: 引入非线性,增加模型的表达能力。池化层: 减少特征维度,增加模型的鲁棒性。全连接层: 在处理空间特征后,全连接层用于进行分类或回归。卷积神经网络的这些组件协同工作,使得CNN能够从原始像素中自动学习有意义的特征层次结构。随着深度增加,这些特征从基本形状和纹理逐渐抽象为复杂的对象和场景表现。

从虚拟到现实:数字孪生驱动智慧城市可持续发展

同时,我们也需要不断探索和创新数字孪生技术的应用场景和发展方向,为智慧城市的可持续发展提供更加全面和深入的支持。“方案365”2023年全新整理智慧城市、数字孪生、乡村振兴、智慧乡村、元宇宙、数据中台、智慧园区、智慧社区、智慧矿山、城市生命线、智慧水利、智慧应急、智慧校园、智慧工地、智慧农业、智慧文旅、智慧交通等300+行业全套解决方案。通过智能电表和能源管理系统,数字孪生技术可以实现对家庭、企业等各个层面的能源使用情况进行监测和优化,提高能源利用效率,推动城市的绿色发展。

如何使用人工智能优化 DevOps?

DevOps 和人工智能密不可分,影响着各种业务。DevOps 可以加快产品开发速度并简化现有部署的维护,而 AI 则可以改变整个系统的功能。DevOps团队可以依靠人工智能和机器学习来进行数据集成、测试、评估和发布系统。更重要的是,人工智能和机器学习可以以高效、快速、安全的方式改进 DevOps 驱动的流程。从开发人员实用性和业务支持的角度来看, 评估AI和ML在 DevOps 中的重要性对于企业来说是有益的。

如何在 ChatGPT 上使用 Wolfram 插件回答数学问题

集成了 Wolfram 插件的 ChatGPT 能够向 Wolfram|Alpha 提出具体问题,并利用 Wolfram 的计算知识和数据资源生成更精确和准确的答案。这两者结合的方式是通过在 ChatGPT 上集成 Wolfram 插件,使 ChatGPT 能够利用 Wolfram|Alpha 的计算知识和 Wolfram 语言的强大功能。最关键的是,它不仅提供了解决方案的分步说明,还提供了答案的视觉参考,使得 Wolfram 成为在使用 ChatGPT 学习和解决数学问题时的理想辅助工具。

人工智能有哪些领域?

像京东自主研发的无人仓采用大量智能物流机器人进行协同与配合,通过人工智能、深度学习、图像智能识别、大数据应用等技术,让工业机器人可以进行自主的判断和行为,完成各种复杂的任务,在商品分拣、运输、出库等环节实现自动化。人工智能在金融领域的应用主要有:智能获客、身份识别、大数据风控、智能投顾、智能客服、金融云等,该行业也是人工智能渗透最早、最全面的行业。目前,我国在ITS方面的应用主要是通过对交通中的车辆流量、行车速度进行采集和分析,可以对交通进行实施监控和调度,有效提高通行能力、简化交通管理、降低环境污染等。

使用LOTR合并检索提高RAG性能

为了解决LIM问题并提高检索性能,对RAG系统进行增强是非常重要的。通过设置不同的VectorStores并将它们与Merge retriver结合,以及使用LongContextReorder重新排列结果,可以减少LIM问题并使检索过程更高效。此外,在合并检索器中合并特定领域的嵌入也有着关键作用。这些步骤对于确保我们不会在检索文件的过程中遗漏重要细节至关重要。Lost in the Middle: How Language Models Use Long Contexts 论文。

【AI】人工智能复兴的推进器之神经网络

神经网络是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量节点(或神经元)相互关联构成,每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这可以看作人工神经元的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。此外,根据网络的结构和运行方式,神经网络可以分为前馈神经网络和反馈神经网络。

目标检测与测距算法在极端天气下的应用

在现代社会中,极端天气条件对人们的生活和工作带来了很大的挑战。对于一些特定领域,如交通运输、安全监控等,准确的目标检测与测距算法在极端天气下尤为重要。本文将分点概述极端天气下目标检测与测距算法的关键问题及解决办法。

AI时代架构设计新模式

本书是一本旨在帮助架构师在人工智能时代展翅高飞的实用指南。全书以ChatGPT为核心工具,揭示了人工智能技术对架构师的角色和职责进行颠覆和重塑的关键点。本书通过共计 13 章的系统内容,深入探讨AI技术在架构设计中的应用,以及AI对传统架构师工作方式的影响。通过学习,读者将了解如何利用ChatGPT这一强大的智能辅助工具,提升架构师的工作效率和创造力。本书的读者主要是架构师及相关从业人员。

深度解析 PyTorch Autograd:从原理到实践

本文深入探讨了 PyTorch 中 Autograd 的核心原理和功能。从基本概念、Tensor 与 Autograd 的交互,到计算图的构建和管理,再到反向传播和梯度计算的细节,最后涵盖了 Autograd 的高级特性。

ChatGPT的常识

ChatGPT不仅可以提供高效的服务,还可以通过模拟人类对话和表情,提高人机交互的趣味性和友好性。其次,ChatGPT可以实现个性化服务,根据用户的个性化需求和反馈不断优化和改进。用户在与ChatGPT进行交互的过程中,ChatGPT可以对用户的个性化需求进行识别和记录,从而实现个性化的服务。ChatGPT的设计理念是建立一个可以持续学习和更新的聊天机器人,可以不断地根据用户的反馈和互动进行优化和改进。同时,ChatGPT还具有很强的适应性和灵活性,可以应对不同场景和话题的要求。

人工智能时代:AIGC的横空出世

AIGC是一种新的人工智能技术,即人工智能生成内容。它是一种基于机器学习和自然语言处理的技术,能够自动产生文本、图像、音频等多种类型的内容。

【图像处理】使用各向异性滤波器和分割图像处理从MRI图像检测脑肿瘤(Matlab代码实现)

脑肿瘤是一种致命的疾病,没有MRI技术,无法可靠地检测到。为了为MRI图像的形态学操作铺平道路,我们首先使用各向异性扩散滤波器对图像进行滤波,以降低像素之间的对比度。然后,我们调整图像大小,并手动将其转换为黑白图像,通过阈值处理来初步筛选出肿瘤可能存在的区域。这个项目的更大目标是建立一个包含从不同角度拍摄的特定人类MRI图像中的肿瘤2D图像数据的数据库,并通过对这些图像进行分析来确定肿瘤的精确3D位置。尽管这个模拟程序在大多数情况下可以给出准确的结果,但对于过小的肿瘤或具有中空结构的肿瘤,它可能无法执行。
返回
顶部