1. 概述

我们的数据库一般都会并发执行多个事务,多个事务可能会并发的对相同的一批数据进行增删改查操作,可能就会导致我们说的脏写、脏读、不可重复读、幻读这些问题。

这些问题的本质都是数据库的多事务并发问题,为了解决多事务并发问题,数据库设计了事务隔离机制、锁机制、MVCC多版本并发控制隔离机制,用一整套机制来解决多事务并发问题。接下来,我们会深入讲解这些机制,让大家彻底理解数据库内部的执行原理。

2. 事务及其ACID属性

事务是由一组SQL语句组成的逻辑处理单元,事务具有以下4个属性,通常简称为事务的ACID属性。

  • 原子性(Atomicity) :事务是一个原子操作单元,其对数据的修改,要么全都执行,要么全都不执行。
  • 一致性(Consistent) :在事务开始和完成时,数据都必须保持一致状态。这意味着所有相关的数据规则都必须应用于事务的修改,以保持数据的完整性。
  • 隔离性(Isolation) :数据库系统提供一定的隔离机制,保证事务在不受外部并发操作影响的“独立”环境执行。这意味着事务处理过程中的中间状态对外部是不可见的,反之亦然。
  • 持久性(Durable) :事务完成之后,它对于数据的修改是永久性的,即使出现系统故障也能够保持。

2.1. 并发事务处理带来的问题

更新丢失(Lost Update)或脏写

当两个或多个事务选择同一行,然后基于最初选定的值更新该行时,由于每个事务都不知道其他事务的存在,就会发生丢失更新问题–最后的更新覆盖了由其他事务所做的更新

脏读(Dirty Reads)

一个事务正在对一条记录做修改,在这个事务完成并提交前,这条记录的数据就处于不一致的状态;这时,另一个事务也来读取同一条记录,如果不加控制,第二个事务读取了这些“脏”数据,并据此作进一步的处理,就会产生未提交的数据依赖关系。这种现象被形象的叫做“脏读”。

一句话:事务A读取到了事务B已经修改但尚未提交的数据,还在这个数据基础上做了操作。此时,如果B事务回滚,A读取的数据无效,不符合一致性要求。

不可重读(Non-Repeatable Reads)

一个事务在读取某些数据后的某个时间,再次读取以前读过的数据,却发现其读出的数据已经发生了改变、或某些记录已经被删除了!这种现象就叫做“不可重复读”。

一句话:事务A内部的相同查询语句在不同时刻读出的结果不一致,不符合隔离性

幻读(Phantom Reads)

一个事务按相同的查询条件重新读取以前检索过的数据,却发现其他事务插入了满足其查询条件的新数据,这种现象就称为“幻读”。

一句话:事务A读取到了事务B提交的新增数据,不符合隔离性

2.2. 事务隔离级别

“脏读”、“不可重复读”和“幻读”,其实都是数据库读一致性问题,必须由数据库提供一定的事务隔离机制来解决。

隔离级别

脏读(Dirty Read)

不可重复读(NonRepeatable Read)

幻读(Phantom Read)

读未提交(Read uncommitted)

可能

可能

可能

读已提交(Read committed)

不可能

可能

可能

可重复读(Repeatableread)

不可能

不可能

可能

可串行化

(Serializable)

不可能

不可能

不可能

数据库的事务隔离越严格,并发副作用越小,但付出的代价也就越大,因为事务隔离实质上就是使事务在一定程度上“串行化”进行,这显然与“并发”是矛盾的。

同时,不同的应用对读一致性和事务隔离程度的要求也是不同的,比如许多应用对“不可重复读"和“幻读”并不敏感,可能更关心数据并发访问的能力。

查看当前数据库的事务隔离级别:

show variables like 'tx_isolation';

设置事务隔离级别:

set tx_isolation='REPEATABLE-READ';

Mysql默认的事务隔离级别是可重复读,用Spring开发程序时,如果不设置隔离级别默认用Mysql设置的隔离级别,如果Spring设置了就用已经设置的隔离级别

3. 锁详解

锁是计算机协调多个进程或线程并发访问某一资源的机制。

在数据库中,除了传统的计算资源(如CPU、RAM、I/O等)的争用以外,数据也是一种供需要用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。

4. 锁分类

  • 从性能上分为乐观锁(用版本对比来实现)和悲观锁
  • 从对数据操作的粒度分,分为表锁和行锁
  • 从对数据库操作的类型分,分为读锁和写锁(都属于悲观锁),还有意向锁

读锁(共享锁,S锁(Shared)):针对同一份数据,多个读操作可以同时进行而不会互相影响,比如:select * from T where id=1 lock in share mode

写锁(排它锁,X锁(eXclusive)):当前写操作没有完成前,它会阻断其他写锁和读锁,数据修改操作都会加写锁,查询也可以通过for update加写锁,比如:select * from T where id=1 for update

意向锁(Intention Lock):又称I锁,针对表锁,主要是为了提高加表锁的效率,是mysql数据库自己加的。当有事务给表的数据行加了共享锁或排他锁,同时会给表设置一个标识,代表已经有行锁了,其他事务要想对表加表锁时,就不必逐行判断有没有行锁可能跟表锁冲突了,直接读这个标识就可以确定自己该不该加表锁。特别是表中的记录很多时,逐行判断加表锁的方式效率很低。而这个标识就是意向锁。

意向锁主要分为:

意向共享锁,IS锁,对整个表加共享锁之前,需要先获取到意向共享锁。

意向排他锁,IX锁,对整个表加排他锁之前,需要先获取到意向排他锁。

4.1. 表锁

每次操作锁住整张表。开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低;一般用在整表数据迁移的场景。

基本操作

--建表SQL
CREATE TABLE `mylock` (
	`id` INT (11) NOT NULL AUTO_INCREMENT,
	`NAME` VARCHAR (20) DEFAULT NULL,
	PRIMARY KEY (`id`)
) ENGINE = MyISAM DEFAULT CHARSET = utf8;

--插入数据
INSERT INTO`test`.`mylock` (`id`, `NAME`) VALUES ('1', 'a');
INSERT INTO`test`.`mylock` (`id`, `NAME`) VALUES ('2', 'b');
INSERT INTO`test`.`mylock` (`id`, `NAME`) VALUES ('3', 'c');
INSERT INTO`test`.`mylock` (`id`, `NAME`) VALUES ('4', 'd');
  • 手动增加表锁
lock table 表名称 read(write),表名称2 read(write);
  • 查看表上加过的锁
show open tables;
  • 删除表锁
unlock tables;

案例分析(加读锁)

当前session和其他session都可以读该表

当前session中插入或者更新锁定的表都会报错,其他session插入或更新则会等待

案例分析(加写锁)

当前session对该表的增删改查都没有问题,其他session对该表的所有操作被阻塞

案例结论

  • 对MyISAM表的读操作(加读锁) ,不会阻塞其他进程对同一表的读请求,但会阻塞对同一表的写请求。只有当读锁释放后,才会执行其它进程的写操作。
  • 对MylSAM表的写操作(加写锁) ,会阻塞其他进程对同一表的读和写操作,只有当写锁释放后,才会执行其它进程的读写操作

4.2. 行锁

每次操作锁住一行数据。开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度最高。

InnoDB与MYISAM的最大不同有两点:

  • InnoDB支持事务(TRANSACTION)
  • InnoDB支持行级锁

行锁演示

一个session开启事务更新不提交,另一个session更新同一条记录会阻塞,更新不同记录不会阻塞

总结:

InnoDB在执行查询语句SELECT时(非串行隔离级别),不会加锁。但是update、insert、delete操作会加行锁。

简而言之,就是读锁会阻塞写,但是不会阻塞读。而写锁则会把读和写都阻塞。

4.2.1. 行锁与事务隔离级别案例分析
CREATE TABLE `account` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  `balance` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
INSERT INTO `test`.`account` (`name`, `balance`) VALUES ('lilei', '450');
INSERT INTO `test`.`account` (`name`, `balance`) VALUES ('hanmei', '16000');
INSERT INTO `test`.`account` (`name`, `balance`) VALUES ('lucy', '2400');
4.2.2. 读未提交

(1)打开一个客户端A,并设置当前事务模式为read uncommitted(未提交读),查询表account的初始值:

set tx_isolation='read-uncommitted';

(2)在客户端A的事务提交之前,打开另一个客户端B,更新表account:

(3)这时,虽然客户端B的事务还没提交,但是客户端A就可以查询到B已经更新的数据: 

(4)一旦客户端B的事务因为某种原因回滚,所有的操作都将会被撤销,那客户端A查询到的数据其实就是脏数据: 

(5)在客户端A执行更新语句update account set balance = balance - 50 where id =1,lilei的balance没有变成350,居然是400,是不是很奇怪,数据不一致啊,如果你这么想就太天真 了,在应用程序中,我们会用400-50=350,并不知道其他会话回滚了,要想解决这个问题可以采用读已提交的隔离级别

4.2.3. 读已提交

(1)打开一个客户端A,并设置当前事务模式为read committed(未提交读),查询表account的所有记录:

set tx_isolation='read-committed';

(2)在客户端A的事务提交之前,打开另一个客户端B,更新表account:

(3)这时,客户端B的事务还没提交,客户端A不能查询到B已经更新的数据,解决了脏读问题:

(4)客户端B的事务提交

(5)客户端A执行与上一步相同的查询,结果 与上一步不一致,即产生了不可重复读的问题

4.2.3. 可重复读

(1)打开一个客户端A,并设置当前事务模式为repeatable read,查询表account的所有记录

set tx_isolation='repeatable-read';

(2)在客户端A的事务提交之前,打开另一个客户端B,更新表account并提交

(3)在客户端A查询表account的所有记录,与步骤(1)查询结果一致,没有出现不可重复读的问题

(4)在客户端A,接着执行update account set balance = balance - 50 where id = 1,balance没有变成400-50=350,lilei的balance值用的是步骤2中的350来算的,所以是300,数据的一致性倒是没有被破坏。可重复读的隔离级别下使用了MVCC(multi-version concurrency control)机制,select操作不会更新版本号,是快照读(历史版本);insert、update和delete会更新版本号,是当前读(当前版本)

(5)重新打开客户端B,插入一条新数据后提交

(6)在客户端A查询表account的所有记录,没有查出新增数据,所以没有出现幻读

(7)验证幻读

在客户端A执行update account set balance=888 where id = 4;能更新成功,再次查询能查到客户端B新增的数据

4.2.4. 串行化

(1)打开一个客户端A,并设置当前事务模式为serializable,查询表account的初始值:

set tx_isolation='serializable';

(2)打开一个客户端B,并设置当前事务模式为serializable,更新相同的id为1的记录会被阻塞等待,更新id为2的记录可以成功,说明在串行模式下innodb的查询也会被加上行锁。

如果客户端A执行的是一个范围查询,那么该范围内的所有行包括每行记录所在的间隙区间范围(就算该行数据还未被插入也会加锁,这种是间隙锁)都会被加锁。此时如果客户端B在该范围内插入数据都会被阻塞,所以就避免了幻读。

这种隔离级别并发性极低,开发中很少会用到。

4.3. 间隙锁(Gap Lock)

间隙锁,锁的就是两个值之间的空隙。Mysql默认级别是repeatable-read,有办法解决幻读问题吗?间隙锁在某些情况下可以解决幻读问题。

假设account表里数据如下:

那么间隙就有 id 为 (3,10),(10,20),(20,正无穷) 这三个区间,

在Session_1下面执行 update account set name = 'zhuge' where id > 8 and id 范围所包含的所有行记录(包括间隙行记录)以及行记录所在的间隙里插入或修改任何数据,即id在(3,20]区间都无法修改数据,注意最后那个20也是包含在内的。

间隙锁是在可重复读隔离级别下才会生效。

4.4. 临键锁(Next-key Locks)

Next-Key Locks是行锁与间隙锁的组合。像上面那个例子里的这个(3,20]的整个区间可以叫做临键锁。

无索引行锁会升级为表锁(RR级别会升级为表锁,RC级别不会升级为表锁)

锁主要是加在索引上,如果对非索引字段更新,行锁可能会变表锁

session1 执行:update account set balance = 800 where name = 'lilei';

session2 对该表任一行操作都会阻塞住

InnoDB的行锁是针对索引加的锁,不是针对记录加的锁。并且该索引不能失效,否则都会从行锁升级为表锁。

锁定某一行还可以用lock in share mode(共享锁) 和for update(排它锁),例如:select * from test_innodb_lock where a = 2 for update; 这样其他session只能读这行数据,修改则会被阻塞,直到锁定行的session提交

结论

Innodb存储引擎由于实现了行级锁定,虽然在锁定机制的实现方面所带来的性能损耗可能比表级锁定会要更高一下,但是在整体并发处理能力方面要远远优于MYISAM的表级锁定的。当系统并发量高的时候,Innodb的整体性能和MYISAM相比就会有比较明显的优势了。

但是,Innodb的行级锁定同样也有其脆弱的一面,当我们使用不当的时候,可能会让Innodb的整体性能表现不仅不能比MYISAM高,甚至可能会更差。

行锁分析

通过检查InnoDB_row_lock状态变量来分析系统上的行锁的争夺情况

show status like 'innodb_row_lock%';

对各个状态量的说明如下:

  • Innodb_row_lock_current_waits: 当前正在等待锁定的数量
  • Innodb_row_lock_time: 从系统启动到现在锁定总时间长度
  • Innodb_row_lock_time_avg: 每次等待所花平均时间
  • Innodb_row_lock_time_max:从系统启动到现在等待最长的一次所花时间
  • Innodb_row_lock_waits: 系统启动后到现在总共等待的次数

对于这5个状态变量,比较重要的主要是:

  • Innodb_row_lock_time_avg (等待平均时长)
  • Innodb_row_lock_waits (等待总次数)
  • Innodb_row_lock_time(等待总时长)

尤其是当等待次数很高,而且每次等待时长也不小的时候,我们就需要分析系统中为什么会有如此多的等待,然后根据分析结果着手制定优化计划。

查看INFORMATION_SCHEMA系统库锁相关数据表

-- 查看事务
select * from INFORMATION_SCHEMA.INNODB_TRX;
-- 查看锁
select * from INFORMATION_SCHEMA.INNODB_LOCKS;
-- 查看锁等待
select * from INFORMATION_SCHEMA.INNODB_LOCK_WAITS;

-- 释放锁,trx_mysql_thread_id可以从INNODB_TRX表里查看到
kill trx_mysql_thread_id

-- 查看锁等待详细信息
show engine innodb status\G; 

4.5. 死锁

set tx_isolation='repeatable-read';

Session_1执行:select * from account where id=1 for update;

Session_2执行:select * from account where id=2 for update;

Session_1执行:select * from account where id=2 for update;

Session_2执行:select * from account where id=1 for update;

查看近期死锁日志信息:show engine innodb status\G;

大多数情况mysql可以自动检测死锁并回滚产生死锁的那个事务,但是有些情况mysql没法自动检测死锁

5. 锁优化建议

  • 尽可能让所有数据检索都通过索引来完成,避免无索引行锁升级为表锁
  • 合理设计索引,尽量缩小锁的范围
  • 尽可能减少检索条件范围,避免间隙锁
  • 尽量控制事务大小,减少锁定资源量和时间长度,涉及事务加锁的sql尽量放在事务最后执行
  • 尽可能低级别事务隔离

相关文章

Redis高并发分布锁实战

Redis分布式锁自己去实现可能会出现几个问题没有在finally显示释放锁,当客户端挂掉了,锁没有被及时删除,这样会导致死锁问题,它这个是需要我们显示的释放锁假如此时我们设置过期时间,但是我们用的是同一个key,就可能出现下一个线程删除上一个线程的锁,但是上一个线程还没有执行完,它这个需要key是不能重复的假如我们既设置了过期时间也指定了不同的key,此时可能因为网络延迟出现上一个线程删除下一个线程的锁,也就是说业务执行的时间超过了锁过期的时间,它这个需要一个锁续命的功能。

Redis是否为单线程?

在深入讨论Redis是否为单线程之前,我们先来了解一下Redis的基本架构。Redis采用了基于内存的数据存储方式,数据存储在内存中,并通过持久化机制将数据定期写入磁盘。客户端:与Redis进行通信的应用程序。Server:负责处理客户端请求、执行命令和管理数据。数据结构:Redis支持多种数据结构,如字符串、列表、哈希表等。事件处理器:用于处理网络事件和命令请求。

MySQL中的高级查询

通过条件查询可以查询到符合条件的数据,但如同要实现对字段的值进行计算、根据一个或多个字段对查询结果进行分组等操作时,就需要使用更高级的查询,MySQL提供了聚合函数、分组查询、排序查询、限量查询、内置函数以实现更复杂的查询需求。接下来将针对这些高级查询的知识进行讲解。

ubuntu20.04安装实时内核补丁PREEMPT_RT

下载实时内核补丁,我下载patch-5.15.148-rt74.patch.sign和patch-5.15.148-rt74.patch.xz。通过以下指令看具体报错并输出日志到make.log:make -j1 deb-pkg 2>&1 | tee ~/make.log。比较幸运没遇到问题,重启进入后,启动页面没有变化,还是进入ubuntu,但是查看内核版本已经自动变到5.15.148。我下载linux-5.15.148.tar.xz和linux-5.15.148.tar.sign。

【Vue3】使用ref与reactive创建响应式对象

先来简单介绍一下ref,它可以定义响应式的变量let xxx = ref(初始值)。**返回值:**一个RefImpl的实例对象,简称ref对象或refref对象的value属性是响应式的。JSxxx.value,但模板中不需要.value,直接使用即可。对于let name = ref('张三')来说,name不是响应式的,name.value是响应式的。下面我们看一看上图红框中代表的意思是,我们哪里需要响应就在哪个里面导入上述代码即可。

如何设置页面恢复运行事件触发回调

由于 Android 原生的 resume 和 pause 事件不能区分是压后台导致还是页面切换导致,所以 pageResume 和 pagePause 事件是通过 JSAPI 调用记录回调的,仅适用于同一个 session 内 Window 之间的互相切换。当一个 WebView 界面重新回到栈顶时,例如从后台被唤起、锁屏界面恢复、从下个页面回退,会触发页面恢复运行(resume)事件。如果这个界面是通过 popWindow 或 popTo 到达,且传递了 data 参数,则此页可以获取到这些参数。

日常遇到Maven出现依赖版本/缓存问题通用思路。

如果怀疑是本地仓库中缓存的依赖有问题,可以手动删除本地仓库(默认位置在用户的.m2/repository目录下),但这是一个较为极端的做法,因为这会删除所有项目的所有本地依赖,之后Maven将不得不重新下载这些依赖。针对于这样的问题 首先我们的第一思路 就是怀疑到是缓存的问题,那么我在这里去描述一下 我们遇到这类通用类的问题如何解决。检查项目的pom.xml文件,确认依赖声明正确无误,没有冲突的版本号或不正确的依赖范围。版本问题导致的,但是我确认过了一下的一些操作 依然没有解决我的问题。

mysql中文首字母排序查询

MySQL中的排序涉及到字符集和排序规则。默认情况下,MySQL按照ASCII码对字符进行排序,数字>字母>中文。但是,特殊字符(非字母、数字、中文)的排序需要一些额外处理。匹配到非字母数字中文的内容,做排序,字母数字中文为null,排序优先级最高,排在上面。为什么用HEX()函数做十六进制编码?因为中文用常规的正则不能匹配到结果。试过SUBSTRING、LEFT等,都不能完美实现多中文的首字母排序。为什么要把字母数字中文放在一起匹配?因为处理复杂度会更高。这样可以处理更复杂的排序需求。

什么是tomcat?tomcat是干什么用的?

Tomcat是一个开源的、轻量级的应用服务器,是Apache软件基金会的一个项目。它实现了Java Servlet、JavaServer Pages(JSP)和Java Expression Language(EL)等Java技术,用于支持在Java平台上运行的动态Web应用程序。AJP是用于Apache服务器与Tomcat之间进行通信的协议,通常用于将动态生成的内容传递给Apache服务器进行处理。它能够运行Servlet和JSP,提供了一个环境,使得开发者能够构建和运行基于Java的Web应用。

C# winfrom中excel文件导入导出

在C#交流群里,看到很多小伙伴在excel数据导入导出到C#界面上存在疑惑,所以今天专门做了这个主题,希望大家有所收获!环境:win10+vs2017界面:主要以演示为主,所以没有做优化,然后主界面上添加两个按钮,分别命名为ExportExcel和ImportExcel,添加两个dataGridView,分别是dataGridView1和dataGridView2然后在窗体加载程序中给dataGr...

使用redis-insight连接到服务器上的redis数据库

我们现在虽然安装好了redis数据库,但是外界是连接不到的,我们需要打破这个限制!设置完之后,可以按以下图的命令查看,redis的密码是不是起作用了。的更改,并退出编辑器。在网上下载好redis-insight的客户端,打开。默认情况下,它可能被设置为只监听本地连接,如。这允许在没有进行身份验证的情况下接受外部连接。(3)为了增强安全性,强烈建议设置访问密码。三、使用redis-insight连接数据库。1.查找redis的配置文件。指令,并确保将其设置为。替换为你自己的强密码。

Java 与 JavaScript 的区别与联系

Java 和 JavaScript 两种编程语言在软件开发中扮演着重要的角色。尽管它们都以“Java”命名,但实际上它们是完全不同的语言,各有其独特的特点和用途。本文将深入探讨 Java 和 JavaScript 的区别与联系,帮助大家更好地理解它们在编程世界中的作用。

C语言中的作用域与生命周期

但是全局变量被 static 修饰之后,外部链接属性就变成了内部链接属性,只能在自己所在的源文件内部使用了,其他源文件,即使声明了,也是无法正常使用的。结论:static修饰局部变量改变了变量的生命周期,生命周期改变的本质是改变了变量的存储类型,本来一个局部变量是存储在内存的栈区的,但是被 static 修饰后存储到了静态区。extern 是用来声明外部符号的,如果一个全局的符号在A文件中定义的,在B文件中想使用,就可以使用extern进行声明,然后使用。全局变量的生命周期是:整个程序的生命周期。

Python和Java的区别(不断更新)

运行效率:一般来说,Java的运行效率要高于Python,这主要是因为Java是编译型语言,其代码在执行前会进行预编译,而Python是解释型语言,边解释边执行。而Python没有类似的强大虚拟机,但它的核心是可以很方便地使用C语言函数或C++库,这使得Python可以轻松地与底层硬件进行交互。**类型系统:**Java是一种静态类型语言,所有变量需要先声明(类型)才能使用,且类型在编译时就已经确定。总的来说,Python和Java各有其优势和特点,选择哪种语言取决于具体的项目需求、开发环境以及个人偏好。

服务器与电脑的区别?

服务器是指一种专门提供计算和存储资源、运行特定软件服务的物理或虚拟计算机。服务器主要用于接受和处理来自客户端(如个人电脑、手机等)的请求,并向客户端提供所需的服务或数据。服务器在网络环境中扮演着中心节点的角色,负责存储和管理数据、提供网络服务、处理计算任务等。

windows下ngnix自启动(借助工具winSw)

在windows下安装nginx后,不想每次都手动启动。本文记录下windows下ngnix自启动(借助工具winSw)的操作流程提示:以下是本篇文章正文内容,下面案例可供参考本文记录下windows下ngnix自启动(借助工具winSw)的操作流程。

linux docker 部署mysql8以上版本时弹出Access denied for user root @ localhost (using password: YES)的解决方案

mysql8登录第一次遇到MYSQL_ROOT_PASSWORD时会自动把该密码尽兴登录,生成一个秘钥放在mysql的数据文件里面,命令里带的MYSQL_ROOT_PASSWORD密码是个参数,除了第一次运行mysql带上会设置密码生成秘钥,其他次启动而不是设置mysql的密码,而是作为参数去验证这个最初的秘钥是否核对正确,于是我进入挂载的data目录,发现我的猜想是对的。通过docker将服务部署完后,navicat连接报错,密码错误,于是我尝试进入mysql容器登录 发现也报错。

synchronized 和 Lock 有什么区别?synchronized 和 ReentrantLock 区别是什么?说一下 atomic 的原理?

例如,AtomicInteger 的 incrementAndGet() 方法就是通过 CAS 操作实现的,它首先尝试原子地将共享变量加 1,如果操作成功,则返回新的值,否则重试直到操作成功为止。CAS 操作的原理是,当 V 的值等于 A 时,将 V 的值更新为 B,否则什么也不做。synchronized 和 Lock 都是 Java 中用于实现线程同步的关键字/类库,它们都能够提供对共享资源的安全访问和防止数据竞争的功能,但是在实现方式、特性、适用场景等方面存在一些差异。

数据湖Paimon入门指南

如果用户建表时指定'merge-engine' = 'partial-update',那么就会使用部分更新表引擎,可以做到多个 Flink 流任务去更新同一张表,每条流任务只更新一张表的部分列,最终实现一行完整的数据的更新,对于需要拉宽表的业务场景,partial-update 非常适合此场景,而且构建宽表的操作也相对简单。这种方式的成本相对较高,同时官方不建议这样使用,因为下游任务在 State 中存储一份全量的数据,即每条数据以及其变更记录都需要保存在状态中。流式查询将不断产生最新的更改。

基于SQL数据库的大模型RAG实现

检索增强生成 (RAG) 涉及从外部数据库获取当前或上下文相关信息,并在请求大型语言模型 (LLM) 生成响应时将其呈现给大型语言模型 (LLM) 的过程。这种方法有效地解决了生成不正确或误导性信息的问题。你能够存储专有业务数据或全局知识,并使你的应用程序能够在响应生成阶段为 LLM 检索此数据。
返回
顶部